
Using OpenMP

Rebecca Hartman-Baker
Oak Ridge National Laboratory

hartmanbakrj@ornl.gov

© 2004-2009 Rebecca Hartman-Baker. Reproduction permitted for
non-commercial, educational use only.

Outline

I.   About OpenMP

II.   OpenMP Directives

III.   Data Scope

IV.  Runtime Library Routines and Environment Variables

V.  Using OpenMP

I. ABOUT OPENMP
Source: http://xkcd.com/225/

About OpenMP

•  Industry-standard shared memory programming model

•  Developed in 1997

•  OpenMP Architecture Review Board (ARB) determines
additions and updates to standard

Advantages to OpenMP

•  Parallelize small parts of application, one at a time
(beginning with most time-critical parts)

•  Can express simple or complex algorithms

•  Code size grows only modestly

•  Expression of parallelism flows clearly, so code is easy
to read

•  Single source code for OpenMP and non-OpenMP –
non-OpenMP compilers simply ignore OMP directives

OpenMP Programming Model

•  Application Programmer Interface (API) is combination
of
–  Directives
–  Runtime library routines
–  Environment variables

•  API falls into three categories
–  Expression of parallelism (flow control)
–  Data sharing among threads (communication)
–  Synchronization (coordination or interaction)

Parallelism

•  Shared memory, thread-based parallelism

•  Explicit parallelism (parallel regions)

•  Fork/join model

Source: https://computing.llnl.gov/tutorials/openMP/

II. OPENMP DIRECTIVES

Star Trek: Prime Directive by Judith and Garfield Reeves-Stevens, ISBN 0671744666

II. OpenMP Directives

•  Syntax overview

•  Parallel

•  Loop

•  Sections

•  Synchronization

•  Reduction

Syntax Overview: C/C++

•  Basic format
#pragma omp directive-name [clause] newline

•  All directives followed by newline

•  Uses pragma construct (pragma = Greek for “thing”)

•  Case sensitive
•  Directives follow standard rules for C/C++ compiler

directives

•  Long directive lines can be continued by escaping newline
character with \

Syntax Overview: Fortran
•  Basic format:

sentinel directive-name [clause]

•  Three accepted sentinels: !$omp *$omp c$omp
•  Some directives paired with end clause
•  Fixed-form code:

–  Any of three sentinels beginning at column 1
–  Initial directive line has space/zero in column 6
–  Continuation directive line has non-space/zero in column 6
–  Standard rules for fixed-form line length, spaces, etc. apply

•  Free-form code:
–  !$omp only accepted sentinel
–  Sentinel can be in any column, but must be preceded by only white

space and followed by a space
–  Line to be continued must end in & and following line begins with

sentinel
–  Standard rules for free-form line length, spaces, etc. apply

OpenMP Directives: Parallel

•  A block of code executed by multiple threads
•  Syntax:

#pragma omp parallel private(list)\
shared(list)

{
 /* parallel section */
}

!$omp parallel private(list) &
!$omp shared(list))
! Parallel section
!$omp end parallel

Simple Example (C/C++)

#include <stdio.h>
#include <omp.h>
int main (int argc, char *argv[]) {
 int tid;
 printf(“Hello world from threads:\n”);
 #pragma omp parallel private(tid)
 {
 tid = omp_get_thread_num();
 printf(“<%d>\n”, tid);
 }
 printf(“I am sequential now\n”);
 return 0;

}

Simple Example (Fortran)

program hello

integer tid, omp_get_thread_num

write(*,*) ‘Hello world from threads:’

!$OMP parallel private(tid)

tid = omp_get_thread_num()

write(*,*) ‘<‘, tid, ‘>’

!$omp end parallel

write(*,*) ‘I am sequential now’

end

Output (Simple Example)

Output 1
Hello world from
threads:

<0>
<1>
<2>
<3>
<4>
I am sequential now

Output 2
Hello world from
threads:

<1>
<2>
<0>
<4>
<3>
I am sequential now

Order of execution is scheduled by OS!!!!!!

OpenMP Directives: Loop

•  Iterations of the loop following the directive are executed in
parallel

•  Syntax:
#pragma omp for schedule(type [,chunk]) \
private(list) shared(list) nowait
 {
 /* for loop */
 }

!$OMP do schedule(type [,chunk]) &
!$OMP private(list) shared(list)
C do loop goes here
!$OMP end do nowait
–  type = {static, dynamic, guided, runtime}
–  If nowait specified, threads do not synchronize at end of loop

Which Loops Are Parallelizable?

Parallelizable

•  Number of iterations known
upon entry, and does not
change

•  Each iteration independent of
all others

•  No data dependence

Not Parallelizable

•  Conditional loops (many
while loops)

•  Iterator loops (e.g., iterating
over a std::list<…> in
C++)

•  Iterations dependent upon
each other

•  Data dependence

Example: Parallelizable?

/* Gaussian Elimination (no pivoting):
 x = A\b */

for (int i = 0; i < N-1; i++) {
 for (int j = i; j < N; j++) {
 double ratio = A[j][i]/A[i][i];
 for (int k = i; k < N; k++) {
 A[j][k] -= (ratio*A[i][k]);
 b[j] -= (ratio*b[i]);
 }
 }
}

Example: Parallelizable?

i loop

j, k loops

i loop

i loop

i loop

j, k loops

j, k loops

j, k loops

Pivot

row/column

Updated

entries

Unused

entries

Example: Parallelizable?

•  Outermost Loop (i):
–  N-1 iterations
–  Iterations depend upon each other (values computed at step
i-1 used in step i)

•  Inner loop (j):
–  N-i iterations (constant for given i)
–  Iterations can be performed in any order

•  Innermost loop (k):
–  N-i iterations (constant for given i)
–  Iterations can be performed in any order

Example: Parallelizable?

/* Gaussian Elimination (no pivoting):
 x = A\b */

for (int i = 0; i < N-1; i++) {
#pragma omp parallel for
 for (int j = i; j < N; j++) {
 double ratio = A[j][i]/A[i][i];
 for (int k = i; k < N; k++) {
 A[j][k] -= (ratio*A[i][k]);
 b[j] -= (ratio*b[i]);
 }
 }
}

Note: can combine parallel and for into single pragma line

OpenMP Directives: Loop Scheduling

•  Default scheduling determined by implementation
•  Static

–  ID of thread performing particular iteration is function of
iteration number and number of threads

–  Statically assigned at beginning of loop
–  Load imbalance may be issue if iterations have different

amounts of work

•  Dynamic
–  Assignment of threads determined at runtime (round robin)
–  Each thread gets more work after completing current work
–  Load balance is possible

Loop: Simple Example

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
int main () {
 int i, chunk;
 float a[N], b[N], c[N];
 /* Some initializations */
 for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
 chunk = CHUNKSIZE;
 #pragma omp parallel shared(a,b,c,chunk) private(i)
 {
 #pragma omp for schedule(dynamic,chunk) nowait
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 } /* end of parallel section */
 return 0;
}

OpenMP Directives: Sections

•  Non-iterative work-sharing construct

•  Divide enclosed sections of code among threads

•  Section directives nested within sections directive

•  Syntax: C/C++ Fortran
#pragma omp sections

{
 #pragma omp section
 /* first section */
 #pragma omp section
 /* next section */
}

!$OMP sections

!$OMP section
C First section
!$OMP section
C Second section
!$OMP end sections

Sections: Simple Example

#include <omp.h>
#define N 1000
int main () {
 int i;
 double a[N], b[N],

c[N], d[N];
 /* Some initializations

*/
 for (i=0; i < N; i++) {
 a[i] = i * 1.5;
 b[i] = i + 22.35;
 }

 #pragma omp parallel \

 shared(a,b,c,d) private(i)
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 #pragma omp section
 for (i=0; i < N; i++)
 d[i] = a[i] * b[i];

 } /* end of sections */
 } /* end of parallel section */
return 0;
}

OpenMP Directives: Synchronization

•  Sometimes, need to make sure threads execute
regions of code in proper order
–  Maybe one part depends on another part being completed
–  Maybe only one thread need execute a section of code

•  Synchronization directives
–  Critical
–  Barrier
–  Single

OpenMP Directives: Synchronization

•  Critical
–  Specifies section of code that must be executed by only one thread

at a time
–  Syntax: C/C++ Fortran

#pragma omp critical [name] !$OMP critical [name]
 !$OMP end critical

–  Names are global identifiers – critical regions with same name are
treated as same region

•  Single
–  Enclosed code is to be executed by only one thread
–  Useful for thread-unsafe sections of code (e.g., I/O)
–  Syntax: C/C++ Fortran

#pragma omp single !$OMP single
 !$OMP end single

OpenMP Directives: Synchronization

•  Barrier
–  Synchronizes all threads: thread reaches barrier and waits

until all other threads have reached barrier, then resumes
executing code following barrier

–  Syntax: C/C++ Fortran
#pragma omp barrier !$OMP barrier

–  Sequence of work-sharing and barrier regions encountered
must be the same for every thread

OpenMP Directives: Reduction

•  Reduces list of variables into one, using operator (e.g.,
max, sum, product, etc.)

•  Syntax
#pragma omp reduction(op : list)

!$OMP reduction(op : list)

where list is list of variables and op is one of following:
–  C/C++: +, -, *, &, ^, |, &&, or ||
–  Fortran: +, -, *, .and., .or., .eqv., .neqv., or max,
min, iand, ior, ieor

III. VARIABLE SCOPE
Angled spotting scope. Source: http://www.spottingscopes.us/angled-scope-328.jpg

Variable Scope

•  By default, all variables shared except
–  Certain loop index values – private by default
–  Local variables and value parameters within subroutines

called within parallel region – private
–  Variables declared within lexical extent of parallel region –

private

Default Scope Example
void caller(int *a, int n) {

int i,j,m=3;

#pragma omp parallel for

for (i=0; i<n; i++) {

 int k=m;

 for (j=1; j<=5; j++) {

 callee(&a[i], &k, j);

 }

}

void callee(int *x, int *y, int
z) {

 int ii;

 static int cnt;

 cnt++;

 for (ii=1; ii<z; ii++) {

 *x = *y + z;

 }

}

Var Scope Comment
a shared Declared outside parallel construct

n shared same

i private Parallel loop index

j shared Sequential loop index

m shared Declared outside parallel construct

k private Automatic variable/parallel region

x private Passed by value

*x shared (actually a)

y private Passed by value

*y private (actually k)

z private (actually j)

ii private Local stack variable in called
function

cnt shared Declared static (like global)

Variable Scope

•  Good programming practice: explicitly declare scope
of all variables

•  This helps you as programmer understand how
variables are used in program

•  Reduces chances of data race conditions or
unexplained behavior

Variable Scope: Shared

•  Syntax
–  shared(list)

•  One instance of shared variable, and each thread can read
or modify it

•  WARNING: watch out for multiple threads simultaneously
updating same variable, or one reading while another
writes

•  Example
#pragma omp parallel for shared(a)
for (i = 0; i < N; i++) {
 a[i] += i;
}

Variable Scope: Shared – Bad Example

#pragma omp parallel for shared(n_eq)
for (i = 0; i < N; i++) {
 if (a[i] == b[i]) {
 n_eq++;
 }
}

•  n_eq will not be correctly updated
•  Instead, put n_eq++; in critical block (slow);

introduce private variable my_n_eq, then update
n_eq in critical block after loop (faster); or use
reduction pragma (best)

 Variable Scope: Private

•  Syntax
–  private(list)

•  Gives each thread its own copy of variable
•  Example

#pragma omp parallel private(i, my_n_eq)
{
 #pragma omp for
 for (i = 0; i < N; i++) {
 if (a[i] == b[i]) my_n_eq++;
 }
 #pragma omp critical (update_sum)
 {
 n_eq+=my_n_eq;
 }
}

Best Solution for Sum

#pragma parallel for
reduction(+:n_eq)

for (i = 0; i < N; i++) {
 if (a[i] == b[i]) {
 n_eq = n_eq+1;
 }
}

IV. RUNTIME LIBRARY
ROUTINES AND
ENVIRONMENT VARIABLES
Mt. McKinley National Monument, July, 1966. Source: National Park Service Historic Photograph Collection,
http://home.nps.gov/applications/hafe/hfc/npsphoto4h.cfm?Catalog_No=hpc-001845

38

OpenMP Runtime Library Routines

•  void omp_set_num_threads(int
num_threads)

 subroutine
omp_set_num_threads(scalar_integer_e
xpression)
–  Sets number of threads used in next parallel region
–  Must be called from serial portion of code

OpenMP Runtime Library Routines

•  int omp_get_num_threads()
 integer function omp_get_num_threads()

–  Returns number of threads currently in team executing parallel
region from which it is called

•  int omp_get_thread_num()
 integer function omp_get_thread_num()

–  Returns rank of thread
–  0 ≤ omp_get_thread_num() <
omp_get_num_threads()

OpenMP Environment Variables

•  Set environment variables to control execution of
parallel code

•  OMP_SCHEDULE
–  Determines how iterations of loops are scheduled
–  E.g., setenv OMP_SCHEDULE ”guided, 4”

•  OMP_NUM_THREADS
–  Sets maximum number of threads
–  E.g., setenv OMP_NUM_THREADS 4

V. USING OPENMP

Conditional Compilation

•  Can write single source code for use with or without
OpenMP

•  Pragmas/sentinels are ignored

•  What about OpenMP runtime library routines?
–  _OPENMP macro is defined if OpenMP available: can use

this to conditionally include omp.h header file, else redefine
runtime library routines

Conditional Compilation

#ifdef _OPENMP
 #include <omp.h>
#else
 #define omp_get_thread_num() 0
#endif
…
int me = omp_get_thread_num();
…

Compiling Programs with OpenMP
Directives on Jaguar and Kraken

•  Compiler flags:
–  -mp=nonuma (PGI)
–  -fopenmp (GNU)
–  -mp (Pathscale)

•  Many libraries already compiled with OpenMP
directives

•  Libsci
–  10.3: link with -lsci_quadcore_mp
–  10.2: link with -lsci_mp

Running Programs with OpenMP Directives
on Jaguar and Kraken

•  Set environment variable OMP_NUM_THREADS in
batch script

•  Use the depth (-d) in aprun command to represent
number of threads per MPI process, and -N for number
of MPI processes per node

•  Example: to run on 64 quad-core nodes on Jaguar with
1 MPI process and 4 threads/MPI process, add the
following to your script requesting 256 procs:
export OMP_NUM_THREADS=4

aprun –n 64 -N 1 -d 4 myprog

More about aprun

•  -n pes
–  Allocates pes processing elements (PEs, think MPI tasks)

•  -N pes_per_node
–  Specifies number of processing elements to place per node
–  Reducing number of PEs per node makes more resources

available per PE

•  -d depth
–  Allocates number of CPUs to be used by each PE and its threads

(default 1)
–  If you set OMP_NUM_THREADS but do not specify depth, all

threads will be allocated on a single core

•  pes * pes_per_node * depth ≤ Number in PBS
header

Bibliography/Resources: OpenMP

•  Chapman, Barbara, Gabrielle Jost, and Ruud van der
Pas. (2008) Using OpenMP, Cambridge, MA: MIT Press.

•  Kendall, Ricky A. (2007) Threads R Us,
 http://www.nccs.gov/wp-content/training/
scaling_workshop_pdfs/threadsRus.pdf

•  LLNL OpenMP Tutorial,
https://computing.llnl.gov/tutorials/openMP/

